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TWO VARIABLE HIGHER-ORDER DEGENERATE FUBINI
POLYNOMIALS

DAE SAN KIM, GWAN-WOO JANG, HYUCK-IN KWON, AND TAEKYUN KIM

ABSTRACT. Fubini numbers (also called ordered Bell numbers) have been
studied by several authors (see [2, 3, 4, 6, 8]). Recently, Kim-Kim studied
the two variable Fubini polynomials and degenerate Fubini polynomials (see
[6-8]). In this paper, we consider the higher-order two variable degenerate
Fubini polynomials by using umbral calculus. We present several explicit
formulas and recurrence relations for these polynomials. In addition, we
express the higher-order two variable degenerate Fubini polynomials in
terms of some families of special polynomials and vice versa.

1. Introduction

The two variable degenerate Fubini polynomials F,ST) (z;y) of order r are
defined by

| " S
(1—y((1+>\t)%_1)> (1+At) *%:Fn,x( ) (1.1)

where r is a positive integer and A\ € R. In this paper, y will be an arbitrary but

fixed real number so that Fér))\(w, y) are polynomials in x for each fixed y.

When r =1, F,, \(z;y) = F,r(bill(:c; y) are called two variable degenerate Fubini
polynomials and they are introduced in [6] as a degenerate version of two variable
Fubini polynomials in [2,7,8].

If ¢ = 0, F")(y) = F3(0;y) and F7} = F\")(1) = F\")(0; 1) are called the
degenerate Fubini polynomials of order r and the degenerate Fubini numbers of
order r, respectively.

Further, in the special case of y =1, Fr(br;\(ac, 1) are denoted by Obg)/\(x) and

called the degenerate ordered Bell polynomials; Fffi(l) = Fffi(o, 1) are also
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denoted by Obfg\ and also called the degenerate ordered Bell numbers. Thus

Obff))\(x) and Obg))\ are respectively given by the generating functions

1 " z (r) t
. ) @anE Ob - 1.2
(2—(1+)\t)x> Z 'n/\ | ( )
1 r ) . m
(1 ) Sanl. .
2— (14 M) =0 nl

In this paper, by using umbral calculus we would like to investigate the two
variable higher-order degenerate Fubini polynomials and derive their properties,
recurrence relations and some identities. Especially, we will express some well-
known families of special polynomials as linear combinations of the two variable
higher-order degenerate Fubini polynomials and vice versa.

2. Review on umbral calculus

The purpose of this paper is to use umbral calculus in order to study the two
variable higher-order degenerate Fubini polynomials. Here we will go over some
of the basic facts about umbral calculus. One may refer to [10] for a complete
treatment of modern umbral calculus which is now a rigorous and fascinating
area of mathematics, thanks to the effort of Tian-Carlo Rota and others.

Let C be the field of complex numbers. By F we denote the algebra of all
formal power series in the variable ¢ with the coefficients in C :

0 k
F = {f(t) = Zak%‘ak S (C} .
k=0 ’

Let P = C[z] denote the ring of polynomials in & with the coefficients in C.
Then, by P* we indicate the vector space of all linear functionals on P. For
each L € P*, and each p(z) € P, < L|p(x) > denotes the action of the linear
functional L on p(z).

For f(t) =>"re, ak% € F, we let < f(t)|- > denote the linear functional on
P given by

f@®)|z" >=ap, (n>0).

For L € P*, let f(t) = Y50, < LlaF > & € F. Then < fi(t)|z" >=<
L|z™ >, for all n > 0, and the map L — f1(t) is a vector space isomorphism
from P* to F. Then F may be viewed as the vector space of all linear functionals
on P as well as the algebra of formal power series in t. So an element f(t) € F
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will be thought of as both a formal power series and a linear functional on P. F
is called the umbral algebra, the study of which is the umbral calculus.

The order o(f(t)) of 0 # f(t) € F is the smallest integer k such that the
coefficient of t* does not vanish. Let f(t), g(t) € F, with o(g(t)) = 0, o(f(t)) = 1.
Then there exists a unique sequence of polynomials S, (z) (deg Sy (z) = n) such
that

< g(t)f(t)*|Sn () >=nld, x, for n,k >0, (2.1)

(cf. see [10], Theorem 2.3.1).

Such a sequence is called the Sheffer sequence for the Sheffer pair (g(t), f(t)),
which is denoted by S, (z) ~ (g(t), f(¢)).

It is an elementary fact that S, (z) ~ (g(¢), f(¢)) if and only if

L i N (o
O PR 2

where f(t) is the compositional inverse f(t) satisfying f(f(t)) =t = f(f(t)).
For S, (x) ~ (g(t), f(t)), the Sheffer identity is given by

sn<w+y>=z’( >Sk< VP (1), (2.3)

k=0

where P, (x) = g(t)Sn(2) ~ (1, f(1))-
The following recurrence formula holds: for S, (x) ~ (g(t), f(t)),

(, dON L o
Sa(0) = (2= 47 ) 7500 20

For any h(t) € F, and p(z) € P,

h(t)|zp(x) >=< Oih(t)|p(x) > (
<< _1|p ) >= fo p(u)du, (
<e¥|p(z) >=p(y), (
(
(

eV'p(x) = ( +y)

)
)
)
)
)

© 0 ~J O Ot

The following is the last one that we need: for S,(x) ~ (g(t), f(t)), rn(x) ~
(h(t),1(1)),
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T) = i Ch iri(x), (2.10)
k=0
with
L /B g
o = g (S a7 1) (2.11)

3. Some properties

From (1.1), we immediately see that

F (w3y) ~ (L= y(e" = 1)), 1(eM = 1), (3.1)

and limy_,q FT(LT))\ (z;y) = F,(LT)(a:; y), where Fy(,,r)(a:; y) are called two variable Fu-
bini polynomials of order r and they are given by

(%) ZF(’") ) t—, (3.2)

Also, limy_; Fflr))\(y) = F,(lr)(y). limy o Obny)\(ac) = o) (z), where F,(lr)(y)
are called Fubini polynomials of order r with

(%) Z E(r (3.3)

n=0

and Obgf) (z) are ordered Bell polynomials of order r with

(2 }et> Z ob") (x (3.4)

n=0

A degenerate version of the Stirling numbers of the second kind Ss(n, k) are
the degenrate Stirling numbers of the second kind Ss x(n, k) given by

1 1
L2t 1) = Y S, (see 5.9). (3.5)
n=k
Here we note that limy_,o Sz \(n, k) = Sa(n, k), and

n
Saa(n, k) = Z A8 (n,m)Sa(my k), (see [5]), (3.6)
m=Fk
where Sy(n, k) are the Stirling numbers of the first kind.
Let us consider the higher-order degenerate Fubini polynomials Fér/)\(y)
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WK
s

@)=y +M)F —1)7"

3
Il

¢ 11 -

>

(r 4k — 1)@%((1 )

_1)k

1 — "
(r+k— 1);6ka Z Sa.a(n, k)m

k=0 n=k
o0 n t'"«
=) (Z(r + Kk —1)So 1 (n, k)yk> —
n=0 \k=0 :
Thus we obtain
EN ) = S0+ k= DiSan(n k)", (37)
k=0
and
Ff:/)\(l) = Obﬁ:}\ = (r+k = 1)iSan(n,k). (3.8)
k=0
We claim that
1 (r) - (r+k-1 .

where (z)o,x =1, and (), = x(x—A) - - (x—(n—1)A), for n > 1. In particular,
y = 3 gives us

™y pm L (r4+k—1 (K)n.x
F,3(1) =00} = ];) < . T (3.10)

Also, from (2.3), (3.1) and (3.7), we see that

(3.11)
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and

F(wy) =Y (n>Fﬁ§17x@DFh_mAQD

" (3.12)
n (r—1
=2 <m> 3 @) P (39).
m=0
Setting = 0 in (3.12) yields
T - n r—1
Fé,;\(y) - Z <m> Fv(n,/\ )(’!J)anm,)\(y) (3.13)
m=0

Now, from (3.7), (3.8), (3.10), and (3.11), we have the following result.

Theorem 3.1. Forn > 0, we have the following expressions.

F(T) Z Z ( > r+k— 1)];52’)\(771, k)(m)nfm,)\yk7
m=0 k=0

Fnr))\(y) = Z(r + k — 1)/652,)\(”7 k)yka
k=0

and
n

O, = > (r + k= DSa(n. )
k=0

LKtk =1 (K)o
_?Z< k>2k'

k=0

Before proceeding to the next result, we recall here that the degenerate
Frobenius-Euler polynomials Hr(l'; (u|z) of order r are defined by

<HI%;%_Z> L+20)% = E:Hy;ﬁm 7(U%1) (3.14)

We observe now that, for y # 0,

— tn 1 " 2
ZFT(LT/)\(my)—‘ = ( T > 1+ Xt)>
n=0 e NL=y((L+A)x = 1)




Two variable higher-order degenerate Fubini polynomials

Hence

Fwsy) = HUL (554 ), (v #0).
Collecting (3.12),(3.13) and (3.15), we have the next theorem.

Theorem 3.2. Forn > 0, we have the following identities.

M=

(") (e ar) —
}T‘n7 (x?y) - m

n —_
( )F,;,A“(x;y)Fn_m,A(y)
0

3
Il

[
NE

n _
<m> FOD () Fae o (39),
0

3
Il

NE

r n r—
FD (W) = <m>F,5%£>(y)Fn_m,A<y)7

0

3
Il

and

FO) (x3y) = HY) (M2]z), (y #0).

The next discussion needs the following observation:

M

(1= (@ A% = 1) = S0 (14 20% 1)’

- )lZSQ,/\(kaZ)%
k
Z(Z )i (I 1) >>%

=0

T
<

I
K
=

Il
=

Now, from (1.1) and (3.16), we have

k=0 \I1=0 ’ m=0
oo n k n
-y ( (}) S onseate - £, mw) -
n=0 \k=0 =0

Thus we obtain

(3.15)

(3.16)

11
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(3.17)
=35 () onsentn - k00 E @

(3) nSaatn = k(-0 F Q) = {1’ o=l (3ag)

0, formn>1,
which is equivalent to the following (3.19).
Fy(y) =1,

n—1ln—=k

3.19
F(T Z Z ( ) )iSax(n — K, 1)(— )lF,?;)\(y), for n > 1. ( )

k=0 1=0
The next result following from (3.17) and (3.19).
Theorem 3.3. Forn > 0, we have

n n—=k

n)\—ZZ( ) r)iSoa(n =k, )(—y)'F ()(z Y),
k=0 1=0
and
n—1ln—k n
FRwy=->%" (k> (r)iSan(n — k,1)(=y)' F3 (), forn > 1,
k=0 1=0

with Férg (y) =1

Assume now that n > 1. Then, using (2.5) we have
r (1+Xt)
F7) () = <

T GESY) ))”‘x >
1 Z1,n—1
(oot om

1 o
+<(1 y((14 Xt)> — ))r(at(lJr)\t)'\)lfc >

M= >w
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The seoncd term of (3.20) is clearly ZFS"_)L/\(Z —A;y). On the other hand, the
first term of (3.20) is

1 41| |
Y —(L+Xt)" > !
< (1—y((1+216)% — 1))
= rnyfjl/)\(z +1-X\y).
Hence we have shown that
FO(zy) = 2F0) (2= Ay) +ryF Ut (2 41— Ay). (3.21)

We state (3.21) as the following theorem.

Theorem 3.4. Forn > 0, we have
F) (@y) = aF (@ = Aiy) +ry BT (@ 41— Ay),

and

FDL () = ryF V(1 - hy).

From (2.4) and (3.1), we note that

, g (t _
Fuaten = (o 28) e B )

9(t)
t
_ (r) . =t —rye (r) (..
- mF’“)\(fL‘ - )\’ y) —€ <1 7 y(et - 1)) Fn’)\(x1 y)
, 1 .
= a:F?Ei(x T T L ——— L Y O

1—y(et —1) ™
xFyi(:v - ANy + rngfl)(w +1-Xy).

This gives another way of obtaining the result in Theorem 3.4.
Finally, we note the following.



D. S. Kim, G-W Jang, H-1 Kwon and T. Kim

Il

1
(
< (1+ )% - (1+ )% | x>
L—y((+A)% =1)"  (1—y(1+ 1% —1) "
[eS) l o0 l

( S ER G| w> - <Z F @)y | >>

=0

Then we have derived the following identity:

VE =+ Liy) = (0 + DE () = B V(). (3.22)

)

By (3.22), we obtain the following result.

Theorem 3.5. Forn >0 and r > 2, we have

yF @+ 15y) = (y+ DE (my) — B (@),

4. Some special polynomials in term of F(T;\(:z:; Y)

n,

In this section, we will express some families of special polynomials as linear
combinations of the two variable degenerate higher-order Fubini polynomials
F,(Lri(x,y) For this, as it turns out it is more convenient to use (2.1) than
(2.11).

Let p(x) € C[z] be of degree < n. Then we can write

n
p($) = Z amFgﬁ),\(w; y),
m=0

for unique a,, € C(y).
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We now note from (2.1) and (3.1) that
(=gl =1)" (3(* =)™ | p(x))
- Zaz< Loyle = 1) (R =)™ [ B} @)

= Z alld,m
=0

=mla,,.

Further, From (4.1), we have

am = (1 =y~ D) (G 1) | pla)
= (g = 1) [ (e~ 1)"p()
= = ue = D) | Y Saliom)Stp(a)

j=m k=0 \I[=0

-y lg ,\J—mn_j1 y So(k,1 W1 | ¢tk

= Z ﬁ 2(3,m) kzoglz;(r)l 2(k, )(—y)< | P($)>
j=m = =

For p(x) = Bn(ﬂc),

1 N e
i =Y 75200 m)X’ 73 2 (MiS2(k, ) (=)' (n)jk B
j=m k=0 =0

15

(4.1)

(4.3)

Y5y () ("3 7) 0w m$aim)Sath) By oa-)'

Let H,,(u|z) be the Frobenius-Euler polynomials given by 4=%

(u #1).

et =30 Hlul2) &,
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Similarly, for p(z) = H, (u|z),

-3 () ("1 7) v Satim)Salh D Ho i)'

j=m k=0 [=0

n—j

(4.4)
where H,(u) = H,(u|0) are called the Frobenius-Euler numbers.
On the other hand, for p(z) = 2",

n—j

i = :Z 3 () (") o msaticmysar (| o)

j=m k=0 1=0
n

=SS () (M) S s 0

(j) (PN (. m) Sa(n — 4, 1) (—y)"-

(4.5)
Collecting the results in (4.3), (4.4), and (4.5), we obtain the next theorem.
Theorem 4.1. Forn > 0, we have

Bn() = mZ:O (Z 2 (Z) (” . ) ()X~ 85(j,m) Sa l)Bn-j-k(—w’)

H, (ulz) = mZ (Z Sy () ("3 7) v msatiomisat, z>Hnjk<u><y>l)

j=m [=0

z" = Z (Z 3 <ZL> ()N~ 8y (4, m)Sz(n—j,l)(—y)l> Fg)/\(x,y)

) = Bel,(z) = Y1, S2(n,i)z’, we obtain

—J k
an =3 %52(j7 NS S 0 Sa(0 () (1| 5 Bela (@) (4.6)
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Here

(1] tj+kBeln(:1:)>

= Z Sg(n,i)<1‘tj+ka:i>
ifj*’“ (4.7)

E So(1,8) (%) j4+-k04,j+k
i=j+k

= So(n,j +k)(j + k).

0
Similarly, applying (4.2), to p(z) = (), = Y1 S1(n,i)z’, we have

n n—j k

=33y (Jj’f) ()N Sa(j.m) Sa(k, DS + K)(—y). (4.9)

Jj=m k=0 (=0

We now state (4.8) and (4.9) as a theorem.

Theorem 4.2. For n > 0, we have
n—j k .
Beln( ( > <J B k) (r)iN " 8o (j, m) S2 (k, 1)
Jj=m k=0 = J

X Sp(n,j + k><y>l)F:,:,&<x; ).

and

n n

n—j k
(@) = THRY ()N85, m) Sa (K, 1)
m=0 <J;Lk§=:z< ‘7 ) l ”
x Si(n,j+ k)(—y)l>F7(7:’y)k(x; Y).

5. FTET))\({L‘; y) in terms of some special polynomials

Here we would like to express the two variable higher-order degenerate Fubini
polynomials F:f;‘ (z;y) as linear combinations of some well-known families of
special polynomials.

For this, we first recall from (3.1) that

17



18 D. S. Kim, G-W Jang, H-1 Kwon and T. Kim

F (zsy) ~ (1 ylet — 1)), L —1)).

We let

Fr(:))\(xvy) = Z Cn,msm(z)a (5]_)

m=0

with
Sp(x) ~ (h(t),1(t)).
Then, from (2.11), we see that

1 < h(+log(1 + At))
Cn m = il
(1—y(L+ )3 —1))

= (1(+ log(1 + At)))m|m"> . (5.2)

Throughout this section, we are going to use (5.2). Let S,(x) = ) (xyy) ~
(1 —y(e* =1))",t). Then

1 o
Cpom = m<(§log(1+)\t)) |a™)

1
= Am <m' (log(l + )\t))m | ' >
1 Mgk
_ )\m<1§51(k’,m)—k! 2"
o N (53
_ k. .n

1 n /\k: ‘
= m Z Sl (k‘,m)H(n)kényk

k=m

= A" G (0, m).

Then we obtain the following result from (5.3).
Theorem 5.1. Forn > 0, we have

FU) Z A8 (n,m)FD (25 y).

m=0

To proceed to the next result, we need to observe the following:
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(1203 1)) = S el (@ a0k -1t

=) (r+k—1)y ZS2>\lk)l' (5.4)
k=0 I=k
o l .
= (Z(r + k= DSaa(l, k)y’f> %
1=0 \k=0 !
Next, we let Sy (z) = (2)nx ~ (1, 3(e* —1)). Then
Coym = %((1 —y((L+ )% 1)) 7" [tma")
= (;) y(1+ A% — 1) |27
n e} l tl o
g e
n—m |
- <::L> Z Z T+k—1 kSQ}\(l k) (n—lm)(sn—m,l
1=0 k=0

= (:;) Z (r+k — 1)pSon(n —m, k)y*

1=0
The next result follows from (5.5).
Theorem 5.2. Forn > 0, we have

, n n n—m
FO ) = Y <(m) S (k= DiSan(n—m. k)yk> @
m=0 =0

Now, S, (z) = Fﬁj(w,y) ~ ((L=y(e' —1))*, 5 (e} —1)). If s > r, then, using
(3.16), we get

n n—m
Cn,m = <m> ; (5 - T)ISZ,)\(n —m, l)(_y)l (56)
On the other hand, if s < r, then, from (5.4), we obtain
n n—m
o = <m> S (r - s+ b — DS (n —m, k)yt. (5.7)

k=0
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From (5.6) and (5.7), we have the following theorem.

Theorem 5.3. Forn > 0, the following holds.
For s > r, we have

, n n n—m s
ERn =3 ((m) > (s = riSealn —m, z><—y>l) Fu\ ()
for s <r, we have
- n n n—m s
FR @y =Y <<m> Y (r—s+1-1)S2(n—m, l)z/) TNEINE
m=0 1=0

Let us now consider the degenerate Bernoulli polynomials S, (x) = 8, (z|\) ~
(,\(if—i)’ %(eAt _ 1)>.

c L ¢ 1 T(1+)\t)x ~1 2
TomE\ (1= y((L4 Ay — 1)) t

1 L+ )% —1 g | g

Comb\ (T—y(L+ )% —1))" n+l

1 (n+1 A+ =1 o im (5.8)
n+1< m )<(1—y<<1+At)%—1>)’"t < >

L 41\ /). YR AT
= n+1( m )<Z (Fk,)\(lvy)_Fk)\(y))ﬁ‘z
1

k=0

n+1 .
n+1 ( m ) (F7(L'217m,)\(1;y) - F’r(:glfm)\(y))

Now, (5.8) gives the following result.

Theorem 5.4. For n > 0, we have

. L -+ e .
) = iy S0 (M) (0 (1) = ED )l
m=0

Finally, we would like to consider the degenerate Frobenius-Euler polynomials
S(w) = Hy(ule) = H) (ulz) ~ (ﬁ LM — 1)), (see, (3.14)). Then
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11 (L+M)% —u
Tmll—u \ (1 y((L M)y 1)

1 (n) L+ )% —u g (5.9)
L—ul\m/ \ (1 -y((1+A)5 —1))"

L (nY(pm (r)
= 1—u <m> (Fn—m,)\(l; y) - UFn—m,/\(y))‘

n

Our last result follows from (5.9).

Theorem 5.5. For n > 0, we have

r 1 n r r
Fs) = 0 30 (1) (B0 = b0 0) Hal).
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